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Modes in Rectangular Guides Loaded with a
Transversely Magnetized Slab of Ferrite
away from the Side Walls*

G. BARZILAIT, SENIOR MEMBER, IRE, AND G. GEROSAY, ASSOCIATE, IRE

Summary—The characteristic equation describing the general
modal spectrum for a rectangular guide partially filled with a slab
of ferrite transversely magnetized and situated away from the side
walls is derived. This equation is numerically solved for particular
cases and for modes of zero and first order with respect to the depend-
ence along the direction of the dc magnetic field. Some experiments
to verify the theoretical results are presented and show good agree-
ment with the theory.

I. INTRODUCTION

HE authors in a previous paper! have discussed
Tthe modal spectrum in rectangular guides com-
pletely filled with transversely magnetized ferrite;
in a successive paper? they have discussed the modal
spectrum in rectangular guides loaded with a slab of
transversely magnetized ferrite against one side wall.
The purpose of this work is to report on further
theoretical study on a more general structure of a
rectangular guide loaded with a slab of transversely
magnetized ferrite away from the side walls and to de-
scribe some experiments carried out to verify the theory.
The only analyses available up to date for this struc-
ture are, to our knowledge, relative to modes with no
dependence along the direction of the dc magnetic
field.?—¢
The method of solution we have used 1s similar to the
one already discussed,® but the derivation of the char-
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acteristic equation is very involved and the relative
numerical computations, even by using a medium speed
electronic computer, require considerable length of
time. We have therefore limited our numerical in-
vestigation to some cases which we thought to be of
interest.

Il. Tae CuArRACTERISTIC EQUATION

Let us refer to the parallel plate guide represented in
Fig. 1. We shall assume the walls to be perfectly con-
ducting.

i
£
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Fig. 1—Geometry of the paralle] plate guide partially
filled with magnetized ferrite.

Let us assume the dc magnetic field, of sufficient in-
tensity H, to saturate the ferrite, to be directed along
the z axis. We shall assume for the ferrite region a
scalar dielectric constant € e and a magnetic tensor
permeability u given by the following expression (time
dependence exp [jwt]):

ur jus O
u=wo| —jue m 0,
0 0o 1
where
A R Ty p=M0; r="
1 — 7 1 -7 moHy Wy

and 2, 1s the intensity of the saturation magnetization,
w and wy= —vyH, are the applied and the resonant
circular frequencies, v is the gyromagnetic ratio for the
electron, uo and ¢, are the permeability and the dielectric
constant of the vacuum.

As discussed in detail in our previous work,! to con-
struct our modal solution we shall consider for the three
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regions of width by, by and b fields having spatial de-
pendence of the form:

exp [j(kat + by + £.2)]. (1)

We shall add to the propagation constants k., k,, k. a
subscript f or 0 in order to refer to the ferrite or to the
vacuum regions.

The propagation constants will be measured in units
of w +/uge, and consequently lengths will be measured
assuming as unit 1/ +/ji€,.

In order to satisfy Maxwell’'s equations, we must
have in the ferrite region

patt [ 4 Dhe? — e(un® — po? + pa) ]2 + kot
— ek + it ~ us?) = 0, (2)

where
= ka® + Ry (3)
and in the vacuum regions
Eao® + kyo® + koo® = 1. Y]

Each modal solution of our problem is labelled by a
pair of values k., k,. In order to satisfy the boundary
conditions at the interfaces we must have: k,; =k, =k,
and ku; = ko =k,

For the ferrite region (2) yields, for a given %, two
values of £2:42 and £% From (3) we obtain therefore two
values of k21 ks and k2, for a given k,. Consequently
we express the field in the ferrite region as a superposi-
tion of four fields of the form (1) having the same &,
and k, and arbitrary amplitudes.

In the vacuum regions for a given pair k., k, we have
only one value of k,7?% but, since a general field can be
expressed as a superposition of TE and TM waves, for
each vacuum region we shall have again four arbitrary
amplitudes.

By imposing the tangential component of the electric
field to be zero at the metallic boundaries and the tan-
geutial component of both the electric and magnetic
fields to be continuous at the interfaces between vac-
uum and ferrite, we obtain a svstem of twelve linear al-
gebraic homogeneous equations in the twelve unknown
amplitudes. By setting equal to zero the determinant of
the coefficients, we obtain the following characteristic
equation:

2 2 (mD)HEERY G (8)
{(2,k) (I,m)
'—Yi,k(bO)Xl,m(_bOI) = 09 (5)

where the index pairs 7, k£ and /, m can assume the values
1,2; 1,3; 1,4; 2,3; 2,4; 3,4 and (4, k), represents the
pair which together with ¢, & complete the set of first
four integral numbers; and similarly for (I, m)..

The functions X and ¥ have the following expres-
sions:

Xi,k(bo) = Ci1Ck2 — C120k1,
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where

11 =~ kz(l - kzg)ky() sin kyobo C1z = 0

Co1 = — kxkz2ky0 sin kyobo Cog = — kyo sin kyob()

C31 = 0 C3zp — — (1 —_ kzg) COs kyobo
Ci1 = — kzky[)2 cos kyobo Cas = kiR, cos kyObO

and

Y(z‘,k)(l,m)(bf) = - kylky2(c1lc,llclm,‘l2 + Cik,22clm,11)

+ sin ky1by sin kb (A g, 104 1m 12

+ kyiky2? Bk 12Bim 12 + By1?Cik,21Cim 01
+ £y2?C,12C1m, 12)

-+ ky1kye cos kyiby cos kyobi( B 12 A im 12
+ A 12Bim,i2 + Cur21Cim,12 + Cue,15Cim 21)
+ ky1 cos ky1by sin kyobs[Cu 214 i 12

— A, 12Cim,21 + ky2?(Cute,10B1m, 10

— Bi,15Cm,12)]

+ kyo sin ky1by cos kyob; [Azk,12clm,12

— Ca2dim12 + k1 2(Buk,13Cm, 21

— Cz'k,QlBlm,12)];

where
A1z = @i1Grs — Ap18.2
Bik,liz = bubra — brides
Czk,n = @pbe — ariba
C1Ic,22 = G9br2 — Qrab.a
CLk,Zl = @uabr1 — G2ba1
Cik12 = @ubrs — dpibsz

and similarly for /, m, and:

an = M‘zkz(é - kzz) = a2

Z711 = - (,Ul - l)kzk.v = blz
an = — p2le — L)k aos = — ps(e — Nk,
ba = k2 — pi(e — t:%) bao = k.2 — pi(e — 15?)

31 = kxg[kxz — (e — 112)] 32
— €|kt — (e — 1]

0

k?[k.2 — (e — 1%)]
— €[k.? — pile — 19)]

bsl =0 = 532
an = — k(e — k2 — 110k a4 = — E(uie— k2 — 120k,
b41 = - k;#eé = b42-

It can be seen that (5) contains only even powers of k..

It can be verified that the solution possesses reflec-
tion symmetry along the gz direction. Therefore a solu-
tion for a rectangular guide of height @ can be obtained
by choosing

Be=—>s  m=0,1,2---- (6)
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For m =0, (5) breaks down into two equations cor-
responding to TE and TM modes. TM modes cannot
exist in the rectangular guide obtained by closing the
structure of Fig. 1 with two metallic walls normal to the
g-axis. TE modes can exist and the relative charac-
teristic equation is the same as the one given by others.
From m0, (5) does not in general break down into two
equations and the resulting electromagnetic field can-
not be resolved into TE and TM modes.

The solution does not possess reflection symmetry
along the x axis. In addition, (5) contains in general
odd powers of ks and the solution therefore is not
reciprocal, z.e., a solution 4k, does not necessarily
imply the solution —£&,.

1t should be noted that obvious solutions of (5) are
ki1=0; ke=0; ky=0. These solutions however corre-
spond to zero amplitude fields. It can be verified that

k2 — uile — 11,2%)
k.t — (e — t9%)

»t T €

are always solutions of (5), but these solutions also cor-
respond to zero amplitude fields.

We note that by interchanging b, with b, and &,
with —£k,, (5) remains unchanged as it follows from
symmetry considerations.

To discuss (5), it is convenient to find the asymptotic
behavior of some of the solutions when b,’—0. More
exactly we shall assume b; and b, finite and by letting
by’ —0 we shall look for solutions with real %, such that
|kI]—>oa. From (5) we obtain

M22 - ,Ul(,ul -+ 1) - | ]]:p[‘,ua
tanh | k| by = e —
M1 |kz1 M2

From (7) it is apparent that asymptotic solutions
are possible only when the second member of the equa-
tion is positive. In such a case the asymptotic solutions
are represented by hyperbolas. It should also be noted
that (7, is independent of k., and therefore the asymp-
totic solutions considered are the same for any k., 7.e.,
in the case of the rectangular guide for any m.

IT1. NUMERICAL ANALYSIS

There are several parameters which determine the
solutions of (5), namely: quantities characteristic of the
ferrite medium, 7.e., M, and €; quantities describing the
structure, i.e., a, b, by and by (bo=b—0b;—b¢’); impressed
quantities, i.e., w and H,. The three quantities A7,
w and H, enter our problem through the adimensional
parameters p and 7, so that the actual parameters to be
considered are p, €, 7, @, b, by and by’.

When a set of these parameters has been chosen, (5)
in virtue of (2), (3) and (4) becomes a relation between
k. and %2 We shall fix &, by means of (6), which allows
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us to label our modal solutions according to the integral
values given to m. We shall call, therefore, modes of zero
order those corresponding to k,=0, and modes of first
order those corresponding to k,=w/a, etc.

For a given mode order, (5) determines the relative
propagation constants k,. In what follows we shall only
look for real values of k., i.e., for unattenuated pro-
pagating modes.

With respect to the field configuration in the cross
section of the guide the mode order determines the z de-
pendence. The v dependence is determined by the
values of k,1, k,» and k,o, which can assume real or purely
imaginary values. In fact, by assuming %, and k. real,
(4) states that k2 is real and (2), once solved with re-
spect to ¢, shows that /,2 and #? are both real.

The solutions of (5) can be classified by dividing the
field of variability of 7 into six regions, exactly in the
same manner as we have done in our previous work?rela-
tive to the slab of ferrite against one side wall.

We have numerically solved (5) for three cases which
we thought to be of interest. Two of such cases are
those corresponding to Figs. 5 and 6 of the quoted
paper.?

The results of the numerical analysis are recorded in
the diagram of Figs. 2—-4, which show k, vs by’ for the
values of the parameters indicated in the figures and for
modes of zero and first order.

In the diagrams of Figs. 2—4 the various zones de-
limited by the straight lines k,1=0, k=0 and k,=0
have been shaded in different ways in order to recognize
at a glance when By, &y, and kg are real or imaginary.
It is understood that when one of the three typical
shadings indicated is present the relative b, is real and
when it is not it is imaginary. For instance, when no
shading exists the three k,’s are all imaginary; when all
three shadings are present the three k,’s are all real, and
so on. It should be noted however that for modes of zero
order %, is associated with TM modes, which have zero
amplitude in the rectangular guide. The shading rela-
tive to %k, has been therefore omitted in the diagrams
relative to zero order modes.

The most interesting feature appearing from the
diagrams is the fact that for suitable dimensions of the
guide and of the ferrite slab unidirectional propagation
exists for by =0 and, as soon as the slab of ferrite is
moved sufficiently away from the wall, for zero and first
order modes no propagation can occur in either direc-
tion. I't is reasonable to assume that higher order modes
exhibit the same behavior. Experimental evidences de-
scribed in the next section seemn to agree with this
theoretical result.

In Fig. 4 we have indicated with bo’ the cutoft dis-
tance for modes of zero order. The cutoff distance for
modes of first order is practically the same.

With reference to the zero order modes of Iig. 4 we
have investigated the sign of the group velocity for the
region where there are two propagating modes. We note
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Fig. 5—(a) T-shaped waveguide built to verify the unidirectional
character of a guide of suitable dimensions loaded with magne-
tized ferrite. (b) Experimental curves of the attenuation below the
input level vs the external dc magnetic field for the structure and
the frequencies indicated. All the dimensions are in millimeters.

that, because of the normalization assumed, the group
velocity u, is given by

1

ug = —-— s
_ d(Tky)

\/,uofo T

r

By using the asymptotic expression (7) it is easily
seen that by increasing the frequency, i.e., 7, TR, de-
creases and vice versa. On the other hand for by =0 we
have computed 7k, for two values of the frequency
slightly above and below the frequency relative to Fig. 4
and we have found that the group velocity is positive.
By using these results we can conclude that the two
modes corresponding to the same value of &’ have group
velocity of opposite sign. It seems reasonable to extend
the validity of this result to modes of the first order.

IV. EXPERIMENTAL

The experiments carried out had two different aims:
1) to prove the unidirectionality of a structure cotre-
sponding to the case of Fig. 4 for by’ =0; 2) to verify the
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Fig. 6—(a) Waveguide section built to investigate the behavior of a
guide loaded with a slab of magnetized ferrite. (b) Experimental
curves of the attenuation below the input level vs by’ for the values
of the frequency and the external dc magnetic field indicated. All
the dimensions are in millimeters.

general behavior of a structure corresponding to the
case of Fig. 4 when 6 is varied.

For the experiment 1) we have built a T-shaped
waveguide [shown in Fig. 5(a)] whose dimensions are
given in Fig. 5(b). By sending the RF energy in the
input arm we have recorded in Fig. 5(b) the atten-
uation for both the output arms below the input level
vs the external dc magnetic field.¥ This has been
done for the three different frequencies indicated in
the figure. From the experimental results of Fig. 5(b)
the unidirectional character of the structure considered
is apparent for a wide band of frequencies.

For the experiment 2) we have built a guide section
[shown in Fig. 6(a)] whose dimensions are given in
Fig. 6(b). By means of insulating rods and screws the
slab of ferrite could be moved parallel to itself inside
the guide. By sending energy in the input arm we have
recorded in Fig. 6(b) the attenuation below the input
level at the output arm vs the distance of the slab
of ferrite from one of the walls, for the two opposite
values of the dc magnetic field, which correspond to

7 Note that the dc magnetic field assumed for the theoretical cal-
culations is the internal one, which in the experiments is not uniform
and its average is smaller than the external.
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forward and reverse propagation. In the fgure it is
shown the attenuation for the empty guide, z.e., for the
same guide without the slab of ferrite.

Let's follow the forward propagation experimental
curve from left to right. When the slab of ferrite is
against the left side wall the attenuation is at a mini-
mum. By moving the slab of ferrite away from the wall,
after a region of low attenuation, the signal goes very
rapidly below the level of the attenuation of the empty
guide. This is justified by the theoretical results of Fig.
4 and by the considerations about the group velocity.
In fact, beyond the distance by, no propagation can exist
and below such a distance always exists a propagating
mode with group velocity in the forward direction.

Moving the slab further away from the left side wall,
the signal remains at a level below the empty guide
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attenuation level until we reach a distance approxi-
mately equal to b —b;— b, when the attenuation begins
to decrease and then, after it has reached a minimum,
increases again above the empty guide attenuation.
This last behavior is easily explained by the theoretical
results, since beyond the distance b—b,—b,./, energy
begins to pass in the forward direction through modes
having positive group velocity. However, since these
modes have propagation constants going to — « as the
slab of ferrite approaches the right-hand side wall and
cannot therefore allow propagation in the limit, the
minimum of the attenuation experimentally found is
explained.

From the preceding discussion we can conclude that
there is good agreement between theory and experi-
ments.

Higher-Order Evaluation of Electromagnetic
Diffraction by Circular Disks*

W. H. EGGIMANNT

Summary—The problem of the diffraction of an arbitrary electro-
magnetic field by a circular perfectly-conducting disklhas been
solved by using a series representation in powers of k=2r/\ and the
rectangular disk coordinates. The surface current density is given in
terms of the field and its derivatives at the center of the disk. General
expressions for the electric- and magnetic-dipole moments, the far-
field and the scattering coefficient for the case of a plane wave at
arbitrary incidence are presented. The calculations agree with results
published by other authors. A bibliography of the most recent publi-
cations on this problem is included.

I. INTRODUCTION

HE problem of the diffraction by a circular con-

ducting disk (or the complementary problem for

a circular aperture in an infinite plane conducting
screen) has occupied many workers in the field of dif-
fraction theory. The problem can be formulated as
follows:

1) the electromagnetic field has to obey Maxwell’s
equations,

2) the boundary conditions on the surface of the disk
have to be fufilled, e.g., for a perfectly-conducting
disk the tangential electric field must vanish,

3) the edge conditions [48] at the rim of the disk have
to be obeved; they require that the field energy

* Received by the PGMTT, April 10, 1961; revised manuscript
received, June 8, 1961. This work has been sponsored by the Elec-
tronics Res. Dir. of the AFCRC under contract no. AF 19(604)-3887,

T Dept. of Elec. Engrg., Case Inst. of Tech., Cleveland, Ohio.

remains finite, or that the energy density has to
be integrable over any finite space. This leads to
the requirement that the normal component of
the electric field increases not faster than (1/r)%2
where 7 is the distance from the edge,

4) Sommerfeld’s radiation conditions [47] have to be
fulfilled.

In this paper a power-series solution in (ka) valid for
the small disk problem (a <\/27, where a =disk radius,
A ={ree-space wavelength) and an arbitrary incident
field is given. It is essentially an extension of a proce-
dure described by Bouwkamp [45]. The surface cur-
rent density on the disk up to the third-order approxi-
mation in (ke) is calculated in terms of the electro-
magnetic field and its derivatives at the center of the
disk. From these results expressions for the induced
electric and magnetic dipole moments and the far-zone
fields are derived. The scattering coefficient for a plane
wave at arbitrary incidence has been calculated in agree-
ment with formulas given by Lur’e [19] and Kuritsyn
[20]. The essential advantage of the expressions ob-
tained in this paper is that they can be used for any
primary field. This is important in the case where in-
teraction between several disks is considered. If the
spacing between the disks is not large compared with
the wavelength, the interaction fields cannot be ap-
proximated by a plane wave and the interaction be-



